Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice.
نویسندگان
چکیده
The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-transfected LLC-PK1 (L-mdr1a) and parental cells. P-gp expression amounts were determined by quantitative targeted absolute proteomics. Unbound drug fractions in plasma and brain were obtained from the literature and by measuring brain slice uptake, respectively. Brain-to-plasma concentration ratios (K(p brain)) and its ratios between wild-type and mdr1a/1b(-/-) mice (K(p brain) ratio) were obtained from the literature or determined by intravenous constant infusion. Unbound brain-to-plasma concentration ratios (K(p,uu,brain)) were estimated from K(p brain) and unbound fractions. Based on pharmacokinetic theory, K(p brain) ratios were reconstructed from in vitro P-gp transport activities and P-gp expression amounts in L-mdr1a cells and mouse brain capillaries. All reconstructed K(p brain) ratios were within a 1.6-fold range of observed values. K(p brain) then was reconstructed from the reconstructed K(p brain) ratios and unbound fractions. K(p,uu,brain) was reconstructed as the reciprocal of the reconstructed K(p brain) ratios. For quinidine, loperamide, risperidone, indinavir, dexamethasone, paclitaxel, verapamil, loratadine, and diazepam, the reconstructed K(p brain) and K(p,uu,brain) agreed with observed and estimated in vivo values within a 3-fold range, respectively. Thus, brain distributions of P-gp substrates can be reconstructed from P-gp expression levels, in vitro activity, and drug unbound fractions.
منابع مشابه
Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys.
The aim of this study was to investigate whether in vivo drug distribution in brain in monkeys can be reconstructed by integrating four factors: protein expression levels of P-glycoprotein (P-gp)/multidrug resistance protein 1 at the blood-brain barrier (BBB), in vitro transport activity per P-gp molecule, and unbound drug fractions in plasma and brain. For five P-gp substrates (indinavir, quin...
متن کاملPharmacoproteomics-based reconstruction of in vivo P-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models.
The purpose of this study was to demonstrate experimentally that alterations of in vivo transporter function at the blood-brain barrier (BBB) in disease and during pharmacotherapy can be reconstructed from in vitro data based on our established pharmacoproteomic concept of reconstructing in vivo function by integrating intrinsic transport activity per transporter molecule and absolute protein e...
متن کاملDmd059055 1719..1726
The purpose of this study was to demonstrate experimentally that alterations of in vivo transporter function at the blood-brain barrier (BBB) in disease and during pharmacotherapy can be reconstructed from in vitro data based on our established pharmacoproteomic concept of reconstructing in vivo function by integrating intrinsic transport activity per transporter molecule and absolute protein e...
متن کاملQuantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate.
This study investigated the impact of the active efflux mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) on the predictability of the unbound brain concentration (C(u,brain)) by the concentration in the cerebrospinal fluid (CSF) (C(u,CSF)) in rats. C(u,brain) is obtained as the product of the total brain concentration and unbound fra...
متن کاملThe Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model
Membrane permeability and P-glycoprotein (P-gp) efflux system are regulating factors in the drug brain penetration. Recently, some drug delivery systems have been developed to overcome these limitations. In this study, Metoclopramid has been encapsulated in PLGA nanoparticles using the emulsification/solvent evaporation technique for in vitro evaluation of the effect of PLGA nanoparticles on BB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 339 2 شماره
صفحات -
تاریخ انتشار 2011